

D
e

fi
n

it
io

n
s

W
h

o
 u

se
s

th
e

m

 Idea originating in 1950’s

 Standard way to get Input and Output

 A source or sink of data

 C – stdin, stderr, stdout

 C++ iostream

 Perl IO

 Python io

 Java

 C#

Είναι πολύ σημαντικό να
κατανοήσουμε τους
όρους ότι το εγχειρίδιο
χρησιμοποιεί για να
εξηγήσει πώς PHP κάνει

ρέματα.

And NOT in Greek:

It is very important to
understand the terms that

the manual uses to
explain how PHP does
streams.

 Stream

 Socket

 Filter

 Transport

 Wrapper

 Context

 Scheme

 Target

 Stream

› Resource that exhibits a flow or sucession of

data

 Socket

› Bidirectional network stream that speaks a
protocol

 Filter

› Performs operations on data as it is read
from or written to a stream

 Transport

› Tells a network stream how to communicate

 Wrapper

› Tells a stream how to handle specific

protocols and encodings

 Context

› A set of parameters and options to tell a

stream (or socket or filter) how to behave

 Scheme
› The name of the wrapper to be used. file, http, https, ftp,

etc.

 Target
› Depends on the wrapper, filesystem uses a string path

name, ssh2 uses a PHP resource

home/bar/foo.txt
file:///home/bar/foo.txt
http://www.example.com/foo.txt
ftp://user:pass@ftp.example.com/foo.txt

php://filter/read=string.toupper|string.rot13/resource
=http://www.example.com

 EVERYTHING

 include/require _once

 stream functions

 file system functions

 many other extensions

What are and how to use

Streams, Sockets and Filters

Stream
Contexts

Stream
Transport

Stream
Wrapper

Stream
Filter

ALL IO

 Access input and output generically

 Can write and read linearly

 May or may not be seekable

 Comes in chunks of data

 flock

 transport and wrapper limitations

 non-existent pointers (infinite loops can

and will happen)

 error handling

 Performs operations on stream data

 Can be prepended or appended (even

on the fly)

 Can be attached to read or write

 When a filter is added for read and write,

two instances of the filter are created.

 Data has an input and output state

 When reading in chunks, you may need

to cache in between reads to make

filters useful

 Use the right tool for the job

 Network Stream, Network Transport,

Socket Transport

 Slightly different behavior from a file

stream

 Bi-directional data

 Sockets block

› stream_set_blocking

› stream_set_timeout

› stream_select

 feof means “connection_closed”?

 huge reads or writes (think 8K)

 stream_get_meta_data is READ ONLY

 New APIS in streams and filesystem

functions are replacements

 Extension is old and not really kept up to

date (bit rot)

 Extension is more low level

 stream_socket_server

 stream_socket_client

 Pipes

 STDIN, STDOUT, STDERR

 proc_open

 popen

 Parameters

 Options

 Modify or enhance a stream

 stream_context_set_param

 stream_context_set_option

 stream_context_create

Streams, Stream Transports,

and Filters all available by

default

 file://

 http://

 ftp://

 data://

 glob://

 SSL

› https://

› ftps://

› ssl://

› tls://

 SSH

› ssh2.shell://

› ssh2.exec://

› ssh2.tunnel://

› ssh2.sftp://

› ssh2.scp://

 Phar

› phar://

 Zlib

› compress.zlib://

› zlib://

 Bzip

› compress.bz2://

 string filters

› string.rot13

› string.toupper

› string.tolower

› string.strip_tags

 convert filters
› convert.*

 base64-encode

 base64-decode

 quoted-printable-encode

 quoted-printable-decode

 dechunk
› decode remote HTTP chunked encoding

streams

 consumed
› eats data (that’s all it does)

 bzip.compress and bzip.compress

 convert.iconv.*

 zlib.inflate and zlib.deflate

 mcrypt.* and mdecrypt.*

 tcp

 udp

 unix

 udg

 SSL extension
› ssl

› sslv2

› sslv3

› tls

 php://stdin

 php://stdout

 php://stderr

 php://output

 php://input

 php://filter (5.0.0)

 php://memory (5.1.0)

 php://temp (5.1.0)

Userland Filters and Streams

 There are no interfaces

 Implement as though there were an

interface

 Seekable is optional

 Flushable is optional

 Directory support is optional

In
fo

rm
a

ti
o

n
C

o
d

e

 fopen

 file_get_contents

 Return true or false

 $this->context will have any context

metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fread

 fgets

 file_get_contents

 etc…

 Return string data or false

 $this->context will have any context
metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fwrite

 file_put_contents

 get in a string of data to deal with

 return how many bytes you wrote

In
fo

rm
a

ti
o

n
C

o
d

e

 feof

 file_get_contents

 fread

 etc…

 Return true or false

 $this->context will have any context
metadata

In
fo

rm
a

ti
o

n
C

o
d

e

 fclose

 file_get_contents

 Don’t return anything

 any cleanup should go here

 fstat calls stream_stat

 EVERYTHING ELSE uses url_stat

 Good idea to do both

 Return an array of data identical to stat()

 stream_seek

 stream_tell

 stream_flush

 mkdir

 rmdir

 dir_closedir

 dir_opendir

 dir_readdir

 dir_rewinddir

 stream_lock

 stream_cast

 rename

 unlink

 Extend an internal class php_user_filter

 It’s not abstract…

 Yes that’s a horrible name

 Remember this pre-dates php 5.0

decisions

In
fo

rm
a

ti
o

n
C

o
d

e

 onCreate

 basically a constructor

 Called every time PHP needs a new filter

(on every stream)

 return true or false

 php_user_filter

› $this->filtername

› $this->params

› $this->stream

In
fo

rm
a

ti
o

n
C

o
d

e

 onClose

 basically a destructor

 no return

In
fo

rm
a

ti
o

n
C

o
d

e

 MUST return

› PSFS_PASS_ON

› PSFS_FEED_ME

› PSFS_ERR_FATAL

 You get buckets of data and do stuff to

them

 $in and $out are “bucket brigades”

containing opaque “buckets” of data

 You can only touch buckets and

brigades with the stream_bucket_*

functions

 You get a bucket using

stream_bucket_make_writeable

Use Case land – when streams

make sense

 Data in s3

 Data locally during development

 Easy switch out if alternative storage is

ever desired

 Storing image files

 Existing Zend Framework Code

 Register the s3:// wrapper

 Use a configuration setting for the stream

to use for all images on the system

 Store and edit template files in a

database

 Have the snappiness of including from

disk

 Minimal Configuration

 db:// stream

 simple stream wrapper that looks for the

template in the db, and writes it to the

filesystem before returning the data

 The cached location is FIRST in the

include path, so if it fails, the db stream

gets hit

 Talk to mercurial (hg binary)

 hg communicates via command line

 continue to pipe additional commands

 Use proc_open to keep a pipe to the

binary going

 Pass commands through stdin pipe as

necessary

 Abstract this out to other binaries that

are used by the system

 Elizabeth Marie Smith auroraeosrose@gmail.com

 http://php.net/streams

 http://php.net/filesystem

 http://ciaranmcnulty.com/blog/2009/04/simplifying

-file-operations-using-php-stream-wrappers

mailto:auroraeosrose@gmail.com
http://php.net/streams
http://php.net/filesystem
http://php.net/filesystem
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers
http://ciaranmcnulty.com/blog/2009/04/simplifying-file-operations-using-php-stream-wrappers

